19,180 Hz Wavelength

How Long Is a 19180 Hz Wavelength?

A 19180 Hz sound wave has a wavelength of 0.02 meters, 1.79 cm, 0.06 feet (0 feet and 0.7 inches) or 0.7 inches when traveling in air at 20°C (68°F).

The formula for the wavelenght is λ = c/f where:

  • c is the celerity (speed) of sound = 343.21 m/s or 1126.03 ft/s in air at 20°C (68°F).
  • f is the frequency = 19180 Hz
which gives a wavelength λ of 0.02 meters, or 0.06 feet.

19180 Hz Wavelength Depending on Temperature

The speed of sound in air depends on temperature. Here is how the wavelenght of a 19180 Hz sound wave will vary according to temperature:

Temp (°C) Temp (°F) 19180 Hz wavelength (cm)19180 Hz wavelength (in)
-40-401.59580.6283
-35-311.61290.6350
-30-221.62970.6416
-25-131.64640.6482
-20-41.66290.6547
-1551.67920.6611
-10141.69540.6675
-5231.71140.6738
0321.72730.6800
5411.74310.6862
10501.75870.6924
15591.77410.6985
20681.78940.7045
25771.80460.7105
30861.81970.7164
35951.83470.7223
401041.84950.7281

19180 Hz Half Wavelength and Standing Waves

The half wavelength of a 19180 Hz sound wave is 0.01 meters, 0.89 cm, 0.03 feet (0 feet and 0.35 inches) or 0.35 inches when travelling in air at 20°C (68°F).

Modes (or standing waves) will occur at 19180 Hz in rooms where two opposing walls (axial mode), edges (tangential mode) or corners (oblique mode) are spaced by a distance d = nλ/2 where:

  • n is a natural (positive integer greater than or equal to 1)
  • λ is the 19180 Hz wavelength = 0.02 meters, or 0.06 feet in air at 20°C (68°F).

19180 Hz Standing Waves Distances

n Distance (m) Distance (ft)
10.010.03
20.020.06
30.030.09
40.040.12
50.040.15

We typically don't treat rooms for standing waves above 300 Hz.

Given the relatively small 19180 Hz half wavelength, you can treat your room by using thick acoustic foam. This will absorb frequencies as low as 250 Hz, and all the way up to 20,000 Hz.

How To Convert 19180 Hz To ms

A Hz (Hertz) is a cycle (or period) per second.

Because a 19180 Hz wave will ocillate 19180 times per second, we can find the time of a single cycle (or period) with the formula p = 1/f where:

  • f is the frequency of the wave = 19180 Hz

The result will be expressed in seconds, so let's multiply by 1000 to get miliseconds:

1 / 19180 Hz * 1000 = 0.05 ms.