10,790 Hz Wavelength

How Long Is a 10790 Hz Wavelength?

A 10790 Hz sound wave has a wavelength of 0.03 meters, 3.18 cm, 0.1 feet (0 feet and 1.25 inches) or 1.25 inches when traveling in air at 20°C (68°F).

The formula for the wavelenght is λ = c/f where:

  • c is the celerity (speed) of sound = 343.21 m/s or 1126.03 ft/s in air at 20°C (68°F).
  • f is the frequency = 10790 Hz
which gives a wavelength λ of 0.03 meters, or 0.1 feet.

10790 Hz Wavelength Depending on Temperature

The speed of sound in air depends on temperature. Here is how the wavelenght of a 10790 Hz sound wave will vary according to temperature:

Temp (°C) Temp (°F) 10790 Hz wavelength (cm)10790 Hz wavelength (in)
-40-402.83671.1168
-35-312.86701.1287
-30-222.89691.1405
-25-132.92661.1522
-20-42.95591.1637
-1552.98491.1752
-10143.01371.1865
-5233.04221.1977
0323.07041.2088
5413.09841.2198
10503.12611.2308
15593.15361.2416
20683.18091.2523
25773.20791.2629
30863.23471.2735
35953.26121.2839
401043.28761.2943

10790 Hz Half Wavelength and Standing Waves

The half wavelength of a 10790 Hz sound wave is 0.02 meters, 1.59 cm, 0.05 feet (0 feet and 0.63 inches) or 0.63 inches when travelling in air at 20°C (68°F).

Modes (or standing waves) will occur at 10790 Hz in rooms where two opposing walls (axial mode), edges (tangential mode) or corners (oblique mode) are spaced by a distance d = nλ/2 where:

  • n is a natural (positive integer greater than or equal to 1)
  • λ is the 10790 Hz wavelength = 0.03 meters, or 0.1 feet in air at 20°C (68°F).

10790 Hz Standing Waves Distances

n Distance (m) Distance (ft)
10.020.05
20.030.10
30.050.16
40.060.21
50.080.26

We typically don't treat rooms for standing waves above 300 Hz.

Given the relatively small 10790 Hz half wavelength, you can treat your room by using thick acoustic foam. This will absorb frequencies as low as 250 Hz, and all the way up to 20,000 Hz.

How To Convert 10790 Hz To ms

A Hz (Hertz) is a cycle (or period) per second.

Because a 10790 Hz wave will ocillate 10790 times per second, we can find the time of a single cycle (or period) with the formula p = 1/f where:

  • f is the frequency of the wave = 10790 Hz

The result will be expressed in seconds, so let's multiply by 1000 to get miliseconds:

1 / 10790 Hz * 1000 = 0.09 ms.